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Unexpected Thermal Rearrangement of
N -[1-Methyl-6-(methoxycarbonyl)-5-hexynylidene]Jmethylamine N-Oxide
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N -[1-Methyl-6-(methoxycarbonyl)-5-hexynylidene]methylamine
N-oxide, a ketonitrone which was prepared from the reaction between
methyl 7-oxooct-2-ynoate and N -methylhydroxylamine rearranged
thermally into two isomeric bicyclic compounds instead of the expected
intramolecular [3+2] cycloadduct.  Also an aldonitrone, N -[6-
(methoxycarbonyl)-5-hexynylidene]lmethylamine N -oxide provided the
corresponding rearranged product.

In connection with our research interests in [3+2] cycloaddition of nitrones,” we have
recently reported” that intramolecular [3+2] nitrone addition to an alkyne is facile when the
tether chain length is appropriate, that is, the cycloaddition is successful in case that six-
membered rings fused to isoxazolidines can be formed as shown in the following equation (1).
In the course of examining on the scope and limitations of this intramolecular [3+2] nitrone-
alkyne cycloaddition,” we had occasion to look into the reactions of nitrones having shorter
tethers which would provide five(or smaller, if possible)-membered cycles fused to the
isoxazolidine (Scheme 1).
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The intramolecular cycloaddition of 2a and 2c¢ failed to provide the expected
cycloadducts when heated at reflux in benzene, while the successful cycloadditions shown in
the equation (1) were observed for the nitrones with longer tether chains under the same

condition as mentioned above.”

Prolonged exposure to this condition simply resulted in
gradual decompositon of the nitrones. Nitrone 2a under forcing condition (reflux in toluene),

however, yielded two products in 55% combined yield. The ratio of two products (3 : 4) was
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approximately 1:1. Similarly, aldonitrone 2c when heated at reflux in toluene afforded a
product (5) in lower yield (ca. 20%). Incorporation of an oxygen atom into the tether chain (2b
and 2d) led to decomposition when heated to reflux in either benzene or toluene. So did
further shortening of the tether length (2e and 2f).
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Scheme 1.

The structures of these isolated products were deduced to be the bicyclic compounds 3, 4,
and 5 depicted in Scheme 2 from spectroscopic” and X-ray analyses. According to these data
including DEPT and COSY spectral analyses, it was quite obvious that products 3 and 4 were
structural isomers and, of course, not the expected cycloaddition products. Also isomerization
between 3 and 4 occured on standing chromatographically purified 3 and 4, and this
isomerization process was accelerated upon addition of catalytic amount of acids. Although
much information was available from the routine spectral analysis, unambiguous structural
assignment of the products was not trivial. A conclusive evidence for the correct structures of
the products came from the X-ray analysis of 3 (Fig. 1).

X-Ray data®” reveal that product 3 has a bicyclic structure, and on the basis of this
structure, 4 and 5 should have the stuctures shown in Scheme 2. Therefore, the
intramolecular [3+2] nitrone-alkyne cycloadditon was prohibited due to steric constraints and
consequently nitrone 2a (and 2c) undertook a different reaction course.

Formation of 3 and 4 (also 5) deserves explanation. One plausible mechanism for the
formation could involve the initial attack of oxygen in nitrones 2a (and 2c¢) at the ester
carbonyl carbon and the following rearrangement (Scheme 2). It is well documented that
nitrones can behave as oxygen nucleophlies.S) This attack would lead to the formation of a
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nine-membered cyclic intermediate 6.
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The rearrangement leading to the isolated bicyclic products (3 and 4) would be initiated
with the Michael type addition of methoxide to the alkyne bond accompanied by a

transannular addition to the carbon-nitrogen double bond in nitrone functionality. The

resultant bicyclic intermediate 7 would be
transformed to 8, which would then undergo
deprotonation with elimination of methanol to
produce 3 and 4 (Scheme 2). The rearrangement
of 7 to 8 might proceed via an ionic intermediate
9 formed by the C-N bond cleavage. This
cleavage could be facilitated due to stabilization
of the resultant tertiary carbocation and nitrogen
anion by methoxyvinyl and oxycarbonyl
moieties, respectively.” The formation of 5
from 2c¢ could be similarly explained.

Fig. 1. X-Ray Crystal Structure of 3.
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